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Abstract

Background We previously developed grading metrics for quantitative performance measurement for simulated endoscopic
sleeve gastroplasty (ESG) to create a scalar reference to classify subjects into experts and novices. In this work, we used
synthetic data generation and expanded our skill level analysis using machine learning techniques.

Methods We used the synthetic data generation algorithm SMOTE to expand and balance our dataset of seven actual
simulated ESG procedures using synthetic data. We performed optimization to seek optimum metrics to classify experts
and novices by identifying the most critical and distinctive sub-tasks. We used support vector machine (SVM), AdaBoost,
K-nearest neighbors (KNN) Kernel Fisher discriminant analysis (KFDA), random forest, and decision tree classifiers to
classify surgeons as experts or novices after grading. Furthermore, we used an optimization model to create weights for each
task and separate the clusters by maximizing the distance between the expert and novice scores.

Results We split our dataset into a training set of 15 samples and a testing dataset of five samples. We put this dataset through
six classifiers, SVM, KFDA, AdaBoost, KNN, random forest, and decision tree, resulting in 0.94, 0.94, 1.00, 1.00, 1.00, and
1.00 accuracy, respectively, for training and 1.00 accuracy for the testing results for SVM and AdaBoost. Our optimization
model maximized the distance between the expert and novice groups from 2 to 53.72.

Conclusion This paper shows that feature reduction, in combination with classification algorithms such as SVM and KNN,
can be used in tandem to classify endoscopists as experts or novices based on their results recorded using our grading met-
rics. Furthermore, this work introduces a non-linear constraint optimization to separate the two clusters and find the most
important tasks using weights.

Keywords Endoscopic simulator - Endoscopic sleeve gastroplasty - Non-linear constraint optimization - Synthetic data

generation - Machine learning classification

Endoscopic sleeve gastroplasty (ESG) is a relatively new
endoscopic procedure for primary weight loss. Therefore,

04 Doga Demirel the standardized training for the procedure is still in the early
ddemirel @floridapoly.edu stages of development within the endoscopic and weight loss
) community. The need for skill classification is pertinent and
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current training method produced by the American Society
for Gastrointestinal Endoscopy (ASGE) is called the Skill,
Training, Assessment, and Reinforcement (STAR) program,
which includes an online curriculum, a live course on Ex-
vivo porcine specimen, and a post-course skill assessment
[1, 2]. This training module is currently available for endo-
scopic suturing in general but is not yet developed for ESG.
Outside of this program, other sources of training, such as
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suturing company or formal/informal preceptorships, are ad
hoc and not systematized in any way with any formal assess-
ment after learning sessions. With the help of virtual reality
(VR), training for the ESG procedure could be significantly
improved, considering the model can be mapped closer to a
human procedure and can be repeated without any cadaver/
specimen cost and risk to human patients.

Our ultimate project goal (NIH/NIBIB 1RO1EB033674-
01A1) is to develop a VR training platform where
endoscopists can learn and master the ESG procedure. Since
VR allows for practice repetition on the ESG procedure,
endoscopists could receive feedback and different difficulty
scenarios to improve their progress. We need grading met-
rics to provide descriptive feedback that relies on quantita-
tive measurements to achieve this goal. In addition, we need
to classify endoscopists with respect to their skill level.

Our previous work created a Hierarchical Task Analysis
(HTA) and a Likert scale grading metric for the ESG proce-
dure [3]. These metrics could convey the performance rela-
tion and the expertise level. We successfully demonstrated
that an accurate performance evaluation of an endoscopist
could be provided with our scoring metrics [3, 4]. One of the
limitations of the metrics was that the measurement could
not describe deficiencies in the expertise level at the fine-
granularity level. For instance, the classification of the sub-
jects can be identified with respect to their performance, but
the level of expertise (e.g., how novice they are) among the
subjects remains to be answered. Also, the metrics cannot
identify the most critical tasks and sub-tasks with respect
to the other tasks in the overall procedure. There are no
weights in the metric tasks, as all the metrics are uniformly
equal. Furthermore, the metrics are not adaptive such that
after proficiency is attained, further improvement or refine-
ment cannot be delineated. We, therefore, require a more
in-depth analysis where more precise classification can be
accomplished.

This study uses machine learning methods to improve
classification accuracy and support multi-labeling. Over the
years, classification methods have been used for different
purposes, touching on many other subjects, such as clas-
sifying diabetes and cardiovascular disease [5], classifying
plant species [6], and even numerical classification in neu-
roanatomy [7]. These classification methods require a large
dataset making it inefficient to apply in our case. Larger and
more balanced datasets are needed to eliminate incorrect
training and bias [8]. Our dataset was small, composed of
only four experts and three novice scores. Therefore, we first
plan to expand and balance our dataset using the synthetic
data generation technique, Synthetic Minority Oversampling
(SMOTE), which adds to the minority class.

In some cases, after generating data and balancing the
dataset, there are too many features compared to the number
of samples, which can cause the problem of overfitting. This

leaves a classification algorithm that will have a high train-
ing accuracy but, when tested on real-world data, performs
poorly. To fix this problem, we performed feature extraction
to map multiple features into a smaller number of features to
have a smaller but more meaningful feature space.

We applied Support Vector Machine (SVM) and Kernel
Fisher Discriminant Analysis (KFDA) techniques and other
standard techniques on the expanded dataset to examine the
separability of experts from novices. In addition, we devel-
oped an optimization method that provides further flexibil-
ity in the performance differentiation of the subjects at the
task level. The model is aimed to seek an optimal solution
by either maximizing or minimizing the objective by given
parameter constraints for the task performance distribution.
In this work, we present and compare the results of machine
learning techniques and our non-linear optimization model.
The workflow/overview of our study can be seen in Fig. 1.

Literature review

In the literature review, we will define multiple methods
of synthetic data generation, classification, dimensionality
reduction, and optimization. Synthetic data generation is
used in many studies to balance an imbalanced data set.
In a study by Mohammad et al. [9], SMOTE was used
to improve the classification of an imbalanced diabetes
dataset. The diabetes dataset used, ZADA, contains around
909 patient records. This imbalanced two-class dataset
consists of seven independent variables with a class label
classifying the patient as diabetic or non-diabetic. Moham-
med et al. used six classification algorithms: Naive Bayes,
K-nearest neighbor (KNN), decision tree, logistic regres-
sion, Support Vector Machines, and artificial neural net-
works. The SVM scored the highest accuracy with 0.87 out
of all these methods. After using SMOTE, the accuracy
of the KNN algorithm improved from 0.82 to 0.91, with a
1.00 imbalance correction. Although this paper achieved
significantly higher accuracy using SMOTE and some
other preprocessing, one possible improvement on this
paper would be to use feature reduction using a technique
like PCA. In a work by Xu et al. [10], decision trees were
used as their classification algorithm. They used a clus-
ter-based oversampling algorithm (KNSMOTE), which
combined SMOTE and K-means clustering to maintain a
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Fig. 1 The workflow of our study
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proper sample class. Using eight UCI datasets, this KNS-
MOTE algorithm performed 0.99 and 0.99 on sensitivity
and specificity metrics using the random forest algorithm.

Roopa et al. [11] presented a feature extraction method
for extracting valuable features for tuberculosis analysis.
Although tuberculosis can be diagnosed through chest
X-ray images, many features prohibit the possibility of a
computer diagnosing this disease. They used both PCA
and KPCA to perform feature extraction on the x-ray
images, allowing a computer to classify the images as
being affected or normal. Roopa et al., concluded that in a
linear regression model for the classification, PCA resulted
in 0.96 while KPCA resulted in 0.62 accuracy. The result
of KPCA being 0.62 is an unacceptable result. Wu et al.
[12] classified gait patterns using KPCA feature extraction
and SVM. They used KPCA to extract human movement
information from an OPTOTRAK 3020 motion analysis
system of 24 young and 24 elderly participants. When
combining KPCA with the SVM, their model could clas-
sify young or old patients' gait patterns with 0.91 accuracy.
Although this study achieved a decent accuracy (0.91), it
could be improved by gathering a larger dataset.

In a paper by Neffati et al. [13], brain MR image data
classification is performed using SVMs and KPCA. The
first step in their process was to use KPCA for feature
extraction. The data initially had 1024 dimensions and
were reduced by KPCA to 16 principal components. The
next step they performed was to use K-Fold cross-valida-
tion to avoid overfitting. Once completed, they trained the
SVM classifier and then tested it using new brain MRIs,
outputting a prediction. Using an SVM-KPCA classifier
with an RBF kernel resulted in 1.00 accuracy for three
different brain MR image databases. With the lack of
dimensionality reduction in other results, such as only
reducing to 70 features instead of 16, the accuracy was
0.97, 0.97, and 0.96 for the three databases. In a study
on small organic molecules, an SVM correctly classified
approximately 0.90 of the data with a Matthews correla-
tion coefficient of 0.78 [14].

In a study by Liu et al. [15], KFDA and KPCA were used
for facial recognition. With ten features, KPCA accurately
classified 0.76, and with 60 features, the accuracy was 0.83.
In a paper by Azar et al. [16], lymph disease was diagnosed
using a random forest classifier and PCA for feature reduc-
tion. They selected 15 attributes for PCA and used the aver-
age of tenfold cross-validation. The accuracy of the random
forest, when used in unison with PCA, was 0.83. In a study
by Masetic and Subasi [17], heart failure was diagnosed
based on automatic electrocardiogram (ECG) results. They
used five different classifiers or comparisons, including deci-
sion tree, KNN, SVM, and random forest. Their best result
was from the random forest classifier, which resulted in 1.00
accuracy in identifying and classifying ECG signals.

@ Springer

A study by Jadhav and Channe [18] compared KNN,
Naive Bayes, and decision tree classifiers to classify three
different datasets (weather nominal, Segment challenge, and
supermarket). The accuracy for the weather nominal data-
set was 1.00, 0.92, and 1.00, respectively. For the second
dataset, the results were 1.0, 0.816, and 0.99, respectively.
The final dataset's accuracies were 0.89, 0.63, and 0.63.
Although KNN had the best accuracies overall, decision
tree was the second best.

In a study by Lavanya and Rani [19], three breast cancer
datasets were classified using a decision tree classifier, clas-
sification, and regression trees (CART) using tenfold cross-
validation. Their CART classifier classified the three data-
sets with 0.69, 0.94, and 0.92 accuracy. In [20], the authors
classified X-ray images of good and defective pecans. They
used 100 images of good and 100 images of defective pecans
and compared AdaBoost and SVM classifiers. The AdaBoost
classifier resulted in 0.92, while the SVM classified at 0.90
accuracy. In a paper by Hu et al. [21], they used UAV images
to identify diseased Pinus trees. They compared DCGAN,
the deep learning method, and the AdaBoost classifier. They
combined multiple methods and used precision as the pri-
mary indicator. AdaBoost had a precision of 0.48, combined
with AlexNet resulted in 0.58, and combined with VGG
resulted in 0.69.

In a study by Hossain et al. [22], plant leaf disease detec-
tion was performed using a KNN classifier. The classifier
was tasked with classifying between six different diseases.
The classifier in this study resulted in a 0.96 accuracy when
classifying these six diseases. In a paper by Moldagulova
[23], KNN was used to classify textual documents. When
classifying, they used different numbers of neighbors. 1, 5,
25, 50, 51, 75, and 300 neighbors to compare the results.
With one neighbor, the accuracy was 1.00, with five neigh-
bors, the accuracy was 0.97, with 25 neighbors, the accuracy
was 0.94, and for 300 neighbors, the accuracy was 0.48.
Their results showed that as the neighbors increased, the
accuracy became worse.

With constraint optimization, the problem arises where
not all the functions or constraints are linear. To solve these
problems, we use non-linear constraint optimization (NCO).
NCOs can have unbounded variables, upper bounds, and
range constraints [24]. In a paper written by Schouwenaars
et al. [25], MILP is used for vehicle path planning. This
paper uses LP, mixed integer, and linear constraints in tan-
dem to find optimal solutions for a vehicle's path and colli-
sion avoidance. This research's two main decision variables
were time and fuel, with constraints to avoid collision with
other vehicles and obstacles. Since this study is for collision
avoidance, the techniques do not apply to our study. Schou-
wenaars et al. used CPLEX optimization software in unison
with AMPL/Matlab interface in this paper. This paper used
MILP to create a novel approach to multiple-vehicle path
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planning with collision avoidance. A detailed method of
constraint distance optimization is outlined in a study on
finding the optimum blend of fractal methods for automatic
malignancy determination in dermoscopy images [25]. They
used four different mixed integer programming classification
models: maximizing the distance between groups, minimiz-
ing the total distance within groups, maximizing the total
distance between groups, and minimizing the maximum
within the group.

Methods

The Indiana University Human Research Protection Program
has determined the project does not require an IRB review
due to the project not involving human subjects.

Data collection

We used seven recorded complete ESG procedural videos
performed on porcine models as part of our HTA-based
development of the initial metrics for the ESG procedure [3].
These seven video recordings each included three camera
angles: the endoscope view, the GoPro view, and an external
camera view. These procedures were performed by a total
of four experts and three novices. Two experts performed
the four expert procedures, and three different novices per-
formed all three novice procedures (one each). Using the
recordings, we scored each performance using our metrics
[3]. Our metrics consist of 7 tasks and 45 sub-tasks with a
Likert scale type of grade, with some consisting of an inter-
mediate score. The metrics are inverted; therefore, when the
task is completed properly, the endoscopist will be given a
zero, and when the task is performed incorrectly, they will
be given a five. Following the performance evaluation, we
performed the statistical analysis and determined the task
time and performance relation as previously reported [3].

Synthetic data generation

The machine learning algorithm’s accuracy is proportional
to the size of the data. As the number of procedures recorded
for the initial study was limited, we needed to expand the
dataset. Intuitively, we could record more surgical perfor-
mances and evaluate them. Unfortunately, this was not a
feasible option due to COVID-19, where access to the lab
setting was very limited. We, therefore, used an accurate
synthetic data creation method to expand the current data.
To avoid creating an imbalanced dataset, we utilized over-
sampling to create our synthetic data. The purpose of over-
sampling in data analysis is to compensate for imbalanced
datasets and functions by taking the minority class of the

dataset and creating synthetic data, enlarging the minority
class to balance the dataset [26].

There are a few main types of oversampling techniques,
including random oversampling, SMOTE, and data augmen-
tation. Random oversampling takes random samples from
the minority class and copies them until the dataset is bal-
anced. This was not a viable option since we desired more
complex synthetic data. Other forms of data augmentation
are mainly used in image data, where the image is cropped
or rotated and added to the data set [27]. Since we are not
using image data, we ended up utilizing SMOTE. SMOTE
works by taking a sample from the minority class and con-
sidering its K-nearest neighbors, taking the vector between
the K-neighbor and the selected data point, then parameter-
izing the value with a random number between 0 and 1 [28].
This allowed us to create a balanced dataset with ten values
in each class.

Data preprocessing and feature reduction

The main steps in preprocessing were scaling the data,
reducing the feature dimensionality, tuning the parameters,
and performing K-Fold classification. The standard scaler
standardizes the features by subtracting the mean and scaling
to unit variance. The formula for calculating the standard-
ized score is as follows:

Z =
s

where s is the standard deviation of the training samples, u

is the mean of the training samples, and x is a value, or ele-

ment, of our sample.

Principal component analysis (PCA) [29, 30] was used
for the next step in preprocessing the data. PCA was used
to reduce the features from three to two dimensions. The
three features (suturing, total grade, and time completion)
are linearly combined and projected onto the PC1-PC2 two-
dimensional space. In this lower dimensional representation,
the first two principal components already explain 0.98 of
the variance in our data. Since every single classifier went
through the same process of PCA feature reduction, all of
them used the same linear combinations of the old features.
Below is the PCA biplot shown in Fig. 2.

The next step in preprocessing the data was to tune the
parameters using a K-fold cross-validation framework.
For each classifier, the distribution of the parameters was
defined. For SVM, the kernel parameter and the penalty
parameter were taken in as parameters. The decision tree's
max depth, min samples leaf, and criterion were taken in.
For AdaBoost, the n estimators, learning rate, and algorithm
were taken in as parameters. For the random forest n esti-
mator, max depth and criterion were taken in. For KNN n
neighbors, weights, leaf size, and algorithm were taken in as
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Fig.2 PCA bivariate plot of first two principal components

parameters. For KFDA, n components, the kernel parameter,
and regularization parameter € = 1e-08 were taken in. All
the classifiers used a randomized search to search for the
best possible combination of parameters. Each classifier ran
six cross-fold validation since the number of splits cannot
exceed the number of members in the least populated class
(six).

Classification methods

Since our goal is to create a proper threshold to classify
between expert and novice, we used our new preprocessed
data to train six classifiers. The six classifiers were SVM,
KNN, AdaBoost, KFDA, random forest, and decision trees.
SVMs work by using a soft margin classifier which allows
for soft misclassification (outliers), creating a better long-
term classification accuracy [31]. KNN works by finding
the number k of the nearest “neighboring” points based
on a specified number of neighbors to look for. Based on
those nearest neighbors, it will calculate its similarity to the
already classified points and decide [32]. AdaBoost is an
ensemble boosting classifier that combines multiple classi-
fiers to increase accuracy and sets weights of those classi-
fiers that focus on unusual observations [33]. KFDA works
by maximizing the between-class scatter and minimizing
the within-class scatter. KFDA improves upon Fischer dis-
criminant analysis (FDA) by enabling non-linear subspaces
using the kernel trick. Decision trees predict a target value
by learning decision rules inferred from the data features.
Random forest classifier is an ensemble classifier that builds
multiple decision trees on different samples and takes the
majority vote. Since we used PCA to reduce our data from
three dimensions (total score, suture score, total duration)
to two dimensions, we now had linearly separable data to
classify. We used PCA for all six classifiers and recorded
the results for all of them.

@ Springer

Table 1 Objective function of the optimization model

Optimization model

Objective function = Max : |optArray(x)|

Non-linear constraint optimization

Our objective in the optimization model has a several fold
outcome; first, we desire to separate the distance between
two groups, expert and novice. Second, properly identify/
weigh each task in the procedure. As the preliminary step,
we calculated the distance between these two groups after
clustering them as expert and novice. Once we have the
distance between the two groups, we optimize the task
scores that add to the total score. This leads the distance
between the clusters to “maximize,” creating a more sig-
nificant distinction between an expert and a novice. This
objective is achieved through non-linear constraint opti-
mization, which finds the optimal solution to our objective
function [24].

Weighting each task

To find the weight of each task, an optimization array was
made with all 45 sub-tasks and then ran through the objec-
tive function defined in Table 1. The objective function
returns the array of sub-tasks based on a guess input. In
our case, the guess input(x) is the average of all the scores
per task, called the optimization array (optArray). We set a
constraint with 197 as the maximum score since that was
our original worst score and — 197 as the best possible score.
The solver then used this maximum score and the guess
input to calculate the new scores for each sub-task. Based
on this process, the weights of each sub-task were found and
recorded in the results section.

Separating distance between groups

We provide custom constraints using a distribution function
for a task. We customize the performance score distribution
at the fine granularity at the task level. Therefore, we use
beta distribution to parametrize our solution. Although beta
distribution is a probability distribution, we used it as our
optimized weight. Hence, the model we created uses Beta
Distribution as a weighting technique to separate the two
clusters effectively. With our objective function of maximiz-
ing the distance between the expert cluster (EC) and novice
cluster (NC), we created a list of constraints that will guide
the optimization model to an acceptable maximization of
the scoring metrics. Beta distribution is typically used as
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Table 2 Optimization model

Optimization model

BNC WEC

Objective function = Max : |—— — ——
d NCWeight ECWeight

Functions/Equations
_ LT
Loup ===
2.T, = <~
YL
o1 (1-1,)""
3. Tw B(a.p)
(s 1), 2
4. or ( 7 Hr >ﬂT
1
5./r= "‘T(Z - 1)
_ D(e)r(sr)
6. BT(aT’ ﬁT) - F(ar+ﬁ,)
Constraints

NC EC _ _
1. (NCWeight) - (ECWeighz )’ lb=0,ub=197

2. -StdNC < NCWeight < StdNC
3. -StdEC < ECWeight < StdEC

a probability distribution, but we will use this value as a
weight in our model. Our maximization model is shown in
Table 2.

The original distance is calculated by taking the best
novice score (BNS) and subtracting it from the worst expert
score (WES). Our maximization model uses the same tech-
nique but divides a specific weight, created through beta
distribution unique to each cluster, into the respective scores.
The model then iterates through the possible weights to
maximize the distance between the two groups until land-
ing upon the optimal solution.

Table 2 also shows the beta distribution functions. The
first equation shows the task average (u;) where T stands
for the task itself and i stands for the index of the task list.
The second equation shows the normalized task average (7',)
where k stands for the index of the task list. The third equa-
tion is the weight of each task based on the beta distribution
(T,,). Equations four and five are used to calculate the alpha
(ay) and beta (f;) values for the task, where y is the mean
and o7 is the variance. Equation six is the beta function itself
(By(ay, fy)), where I'(y) is the gamma function.

We created constraints for this objective function
to limit the maximum distance appropriately, as seen
in Table 2. We define the weighted distance in the first
constraint as between 0 and 197. We chose the value 197
because our original maximum score was 197. In the
second constraint, we define a constraint for the novice
weight (NCWeight), with a lower bound of the negative
standard deviation of the NC total grade (— StdNC), and
an upper bound of the standard deviation of the NC total
grade (StdNC). For the third constraint, we define a similar

constraint as the second one but for the expert weight
(ECWeight) with a lower bound of the negative stand-
ard deviation of the EC total grade(-StdEC) and an upper
bound that is the standard deviation of the EC total grade
(StdEC). The model can maximize the distance between
EC and NC with these constraints, effectively separating
the two clusters.

Results

SMOTE results

After applying SMOTE as explained in Section “Synthetic
data generation,” our dataset has been expanded to consist
of twenty values with ten in each class, expert and nov-
ice. After expansion, we conduct a simple SVM for future
use of classification in our ESG evaluation platform. The
comparison of the original and expanded dataset can be
seen in Fig. 3 for the suturing task score, time completion
score, and total score. The original expert class had worse
grades (higher grades) than the expert class's grades (lower
grades) in the expanded dataset. As for the novice class,
the original class was affected by a small number of outli-
ers. In contrast, the expanded novice class was skewed
with a more homogenous distribution of the performance
scores, reflecting a better representation of novice scores.
These data indicate that SMOTE created greater separation
between the two classes allowing for better classification
accuracy by the SVM.
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Fig.3 Comparison of suturing, time completion, and total score for
original and expanded datasets

Classifiers/PCA results

When running PCA, our feature space went from three to
two features creating a linearly separable dataset. Since PCA
takes the original variable space (suturing, time completion,
and total grade) and maps it into a new feature space, the
three original features get mapped into two newly created
orthogonal features built as linear combinations of the three
original features.

After running our dataset through SMOTE and PCA,
we ended up with our dataset of twenty-six samples with
two features, i.e., the first two principal components. We
then split the data into a training and a testing dataset. Our
training data were 19 samples (ten experts, nine novices),
while our testing data were seven samples (three experts,
four novices). The metrics used for the results of the classi-
fiers implemented in this study were the confusion matrix,
accuracy, precision, recall, and FI score [34]. Accuracy, pre-
cision, recall, and F1 score for each classifier can be seen in
Table 3. The confusion matrix comparison of each classifier
used can be seen in Fig. 4.

When tuning the parameters of the SVM classifier, the
best parameters were RBF kernel, gamma of 1e-05, and
a C of 1000. Figure 4a shows the confusion matrix for
the SVM’s training data, where 1.00 of the experts were
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B Label . Label Random Label
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ce rt ce rt ce rt
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= = =

Fig.4 Confusion matrix comparison of each classifier

classified correctly, and 0.89 of the novices were classi-
fied correctly, leaving only 0.11 of the novices who were
falsely classified as experts. The precision for each training
and testing for the SVM was 0.95 and 1.00, respectively,
while recall for the training and testing was 0.94 and 1.00,
and F1 score for the training and testing was 0.95 and 1.00.
For the AdaBoost classifier, the best parameters in the
fivefold validation were 400 estimators, the learning rate
set to 0.001, and the algorithm as SAMME.R. For the
KNN classifier, the best parameters in the fivefold vali-
dation were 11 neighbors, uniform weights, leaf size of
thirty, and the ball tree algorithm. Figure 4b and c depicts
the training data confusion matrix for the AdaBoost and
KNN classifiers. AdaBoost and KNN correctly calculated
1.00 of the true negative and 1.00 of the true positive.
Thus, leaving the false negative at zero and the false true at
zero. For both the AdaBoost and the KNN classifiers, the
precision for each class, expert and novice, was 1.00 and
1.00, respectively. The F1 scores for the experts and nov-
ices were 1.00 and 1.00 for the AdaBoost and the KNN.
For the KFDA classifier, the best parameters in the five-
fold validation were a linear kernel two component and a
robustness offset of 1e-08. KFDA calculated 1.00 of the
novices correctly and 1.00 of the experts correctly, while
misclassifying none. This can be seen in Fig. 4d. The pre-
cision for training and testing for the KFDA classifier was

Table 3 Comparison of

1 . Method Accuracy Precision Recall F1 Score

classifier methods using

accuracy, precision, recall, and Training  Testing Training Testing Training Testing Training Testing

F1 score
SVM 0.94 1.00 0.95 1.00 0.94 1.00 0.95 1.00
AdaBoost 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
KNN 1.00 0.85 1.00 0.83 1.00 0.90 1.00 0.84
KFDA 1.00 0.85 1.00 0.83 1.00 0.90 1.00 0.84
Random forest  1.00 0.85 1.00 0.92 1.00 0.75 1.00 0.79
Decision tree 1.00 0.71 1.00 0.71 1.00 0.71 1.00 0.71
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1.00 and 0.83, respectively. The F1 scores for the training
and testing were 1.00 and 0.84.

While for the parameters of the random forest classifier,
the best parameters in the fivefold validation were 300 esti-
mators, no max depth, and an entropy criterion. As seen
in Fig. 4e, random forest correctly calculated 1.00 of the
novices and 1.00 of the experts correctly. The precision for
training and testing for the random forest classifier were 1.00
and 0.92, respectively. The F1 scores for the training and
testing were 1.00 and 0.79.

Finally, for tuning the parameters of the decision tree
classifier, the best parameters in the fivefold validation were
a max depth of three, a minimum sample leaf of five, and a
Gini criterion. Above in Fig. 4f is the training data confusion
matrix for the decision tree classifier. Decision tree correctly
calculated 1.00 of the novices and 1.00 of the experts. The
precision for training and testing for the decision tree clas-
sifier were 1.00 and 0.71, respectively. The F1 scores for the
training and testing were 1.00 and 0.71.

Figures 5, 6,7, 8, 9, 10 display training and testing graphs
for each classifier. In these figures, experts are represented as
blue squares, and novices are represented as orange triangles
for the training case. Figure 5a shows the SVM classified the
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Fig.6 AdaBoost classification a training and b testing graph

training data with 0.94 accuracy. Figure 5b shows the SVM
classified the testing data with 1.00 accuracy with the seven
data samples.

AdaBoost's training data classification results in a
decision plot where nine expert surgeons were all classi-
fied accurately, and five out of six novices were classified
accurately. When training the AdaBoost classifier with the
tuned parameters, the training accuracy was 1.00, as seen in
Fig. 6a. Given seven data samples, AdaBoost classified the
testing data at 1.00, as seen in Fig. 6b.

For KNN, training data were classified with 1.00 accu-
racy (Fig. 7a). In contrast, for the testing data, KNN clas-
sified the testing data at 0.85 accuracy, where seven data
samples were given (Fig. 7b).

Figures 8a and b show that linear kernel in KFDA clas-
sified the training data with 1.00 accuracy and testing data
with 0.85 accuracy, respectively. Random forest classified
the training data with 1.00 (Fig. 9a) accuracy and testing
data at 0.85 (Fig. 9b).

Finally, Fig. 10a shows the decision tree graph display-
ing the classification separating the two groups, novice,
and expert, for the training case. Decision tree classified
the training data with 1.00 accuracy. Figure 10b shows the
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Fig. 7 K-Nearest neighbors classification a training and b testing graph
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Fig.9 Random forest classification a training and b testing graph

decision tree graph displaying the classification of both
groups for the testing data. Decision tree classified the test-
ing data at 0.71 accuracy, where seven data samples were
given.

Non-linear constraint optimization results

Based on the optimization model, we determined that the
suturing bite is the most critical task, given a maximum

@ Springer
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score of 8.353. The second most important component was
time completion, with a maximum score of 8.203. All the
other maximum scores are shown in Table 4.

Before performing NCO on our data, our original dis-
tance between the BNS and the WES was only 2.0. After
completing NCO on our data with the given constraints as
explained in Section ‘Non-Linear Constraint Optimization,”
our optimized weights were —0.9661 (Novice Weight) and
1.1353 (Expert Weight), giving us a new optimized distance
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Fig. 10 Decision tree classification a training and b testing graph

Table 4 Optimized sub-task
scores

Sub-task optimized scores

Insertion of Over tube: 4.05

Insert into Posterior Pharynx: 4.05

Advance into Esophagus: 4.05

Diagnostic evaluation of esophagus: 4.05

Advance into stomach: 4.05
Advance into duodenum: 4.05
Diagnostic of duodenum: 4.05
Diagnostic of stomach: 4.05
Advance argon plasma: 4.05
Mark anterior wall: 4.05
Mark posterior wall: 4.05
Mark greater curvature: 4.05
Mount overstitch: 4.05

Insert into pharynx: 4.05
Insert into esophagus: 4.05
Insert into stomach: 4.05
Start of suture: 4.05

Grasp tissue anterior wall: 4.05
Suture anterior wall: 4.05

Grasp tissue greater curvature: 4.05

Suture greater curvature: 4.05
Grasp tissue posterior wall: 4.05

Suture posterior wall: 4.05

Suture direction: 4.05

Suture bite: 8.35

Number bites per running suture: 4.05
U-shaped pattern: 4.05

Tighten sutures: 4.05

Suture line: 6.85

End suture: 4.60

Evaluate sleeves need for reinforcement sutures: 6.20
Deploy reinforcement sutures: 4.05

Suture set: 4.70

Removal double channel gastroscope: 4.05
Severe bleeding: 4.05

Bent tag: 4.05

Load tissue helix command: 4.05

Extend tissue helix command: 4.05

Rotate blue cross counterclockwise command: 4.05
Retract helix command: 4.05

Remove helix command: 4.05

Load cinch command: 4.05

Deploy cinch Command: 4.05

Time completion: 8.20

of 55.7162 between the two clusters. This is a distance of
53.7162, which is ~27.8 times larger than our pre-optimi-
zation results. With this more significant distance, we now
have two clusters further away, leaving less room for error
in classification for future procedure grading.

Conclusion
With a long-term goal of creating a well-performing sim-

ulation-based trainer for the ESG procedure, we presented
a method for the simulator to classify between expert and

novice and separate the distance between the two groups.
After creating synthetic data using SMOTE and balancing
our dataset, we reduced the dimensionality of our features
using PCA. We classified experts and novices by compar-
ing six different algorithms SVMs, KNN, AdaBoost, KFDA,
decision tree, and random forest. The most accurate training
result was 1.00 accuracy from AdaBoost, KNN, random for-
est, and decision tree, while the most accurate testing result
was 1.00 accuracy from SVM and AdaBoost.

Afterward, using a non-linear constraint optimization, we
created weights for the tasks in our grading metrics which
we will use in our ESG simulator. We found that the most
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important component to differentiating expert from novice
was the suture bite, and the next most important was time to
completion. We were able to create a distinction between the
expert and the novice group by 51.72. Although, in future of
the ESG simulator, there will be more data available, and the
classifiers may not generalize at 1.00 accuracy, this model
can still be retrained with new data, and the same techniques
can be used to create a reliable classification tool for the
trainer. In future work, we plan to record more ESG proce-
dures to get a better dataset and rerun this process with the
newly created dataset for validation and comparison pur-
poses. This will improve our model with a more accurate
synthetic dataset and reflect the actual procedural scores. In
addition, we will employ other data generation techniques,
such as GANS, to create synthetic data, then classify them
with the same classifiers used in this study to compare with
optimization to validate the authenticity of our workflow.
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