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Abstract
Background  We previously developed grading metrics for quantitative performance measurement for simulated endoscopic 
sleeve gastroplasty (ESG) to create a scalar reference to classify subjects into experts and novices. In this work, we used 
synthetic data generation and expanded our skill level analysis using machine learning techniques.
Methods  We used the synthetic data generation algorithm SMOTE to expand and balance our dataset of seven actual 
simulated ESG procedures using synthetic data. We performed optimization to seek optimum metrics to classify experts 
and novices by identifying the most critical and distinctive sub-tasks. We used support vector machine (SVM), AdaBoost, 
K-nearest neighbors (KNN) Kernel Fisher discriminant analysis (KFDA), random forest, and decision tree classifiers to 
classify surgeons as experts or novices after grading. Furthermore, we used an optimization model to create weights for each 
task and separate the clusters by maximizing the distance between the expert and novice scores.
Results  We split our dataset into a training set of 15 samples and a testing dataset of five samples. We put this dataset through 
six classifiers, SVM, KFDA, AdaBoost, KNN, random forest, and decision tree, resulting in 0.94, 0.94, 1.00, 1.00, 1.00, and 
1.00 accuracy, respectively, for training and 1.00 accuracy for the testing results for SVM and AdaBoost. Our optimization 
model maximized the distance between the expert and novice groups from 2 to 53.72.
Conclusion  This paper shows that feature reduction, in combination with classification algorithms such as SVM and KNN, 
can be used in tandem to classify endoscopists as experts or novices based on their results recorded using our grading met-
rics. Furthermore, this work introduces a non-linear constraint optimization to separate the two clusters and find the most 
important tasks using weights.

Keywords  Endoscopic simulator · Endoscopic sleeve gastroplasty · Non-linear constraint optimization · Synthetic data 
generation · Machine learning classification

Endoscopic sleeve gastroplasty (ESG) is a relatively new 
endoscopic procedure for primary weight loss. Therefore, 
the standardized training for the procedure is still in the early 
stages of development within the endoscopic and weight loss 
community. The need for skill classification is pertinent and 
essential to developing high-impact training modules. One 
current training method produced by the American Society 
for Gastrointestinal Endoscopy (ASGE) is called the Skill, 
Training, Assessment, and Reinforcement (STAR) program, 
which includes an online curriculum, a live course on Ex-
vivo porcine specimen, and a post-course skill assessment 
[1, 2]. This training module is currently available for endo-
scopic suturing in general but is not yet developed for ESG. 
Outside of this program, other sources of training, such as 
device training from the manufacturer of the endoscopic 
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suturing company or formal/informal preceptorships, are ad 
hoc and not systematized in any way with any formal assess-
ment after learning sessions. With the help of virtual reality 
(VR), training for the ESG procedure could be significantly 
improved, considering the model can be mapped closer to a 
human procedure and can be repeated without any cadaver/
specimen cost and risk to human patients.

Our ultimate project goal (NIH/NIBIB 1R01EB033674-
01A1) is to develop a VR training platform where 
endoscopists can learn and master the ESG procedure. Since 
VR allows for practice repetition on the ESG procedure, 
endoscopists could receive feedback and different difficulty 
scenarios to improve their progress. We need grading met-
rics to provide descriptive feedback that relies on quantita-
tive measurements to achieve this goal. In addition, we need 
to classify endoscopists with respect to their skill level.

Our previous work created a Hierarchical Task Analysis 
(HTA) and a Likert scale grading metric for the ESG proce-
dure [3]. These metrics could convey the performance rela-
tion and the expertise level. We successfully demonstrated 
that an accurate performance evaluation of an endoscopist 
could be provided with our scoring metrics [3, 4]. One of the 
limitations of the metrics was that the measurement could 
not describe deficiencies in the expertise level at the fine-
granularity level. For instance, the  classification of the sub-
jects can be identified with respect to their performance, but 
the level of expertise (e.g., how novice they are) among the 
subjects remains to be answered. Also, the metrics cannot 
identify the most critical tasks and sub-tasks with respect 
to the other tasks in the overall procedure. There are no 
weights in the metric tasks, as all the metrics are uniformly 
equal. Furthermore, the metrics are not adaptive such that 
after proficiency is attained, further improvement or refine-
ment cannot be delineated. We, therefore, require a more 
in-depth analysis where more precise classification can be 
accomplished.

This study uses machine learning methods to improve 
classification accuracy and support multi-labeling. Over the 
years, classification  methods have been used for different 
purposes, touching on many other subjects, such as clas-
sifying diabetes and cardiovascular disease [5], classifying 
plant species [6], and even numerical classification in neu-
roanatomy [7]. These classification methods require a large 
dataset making it inefficient to apply in our case. Larger and 
more balanced datasets are needed to eliminate incorrect 
training and bias [8]. Our dataset was small, composed of 
only four experts and three novice scores. Therefore, we first 
plan to expand and balance our dataset using the synthetic 
data generation technique, Synthetic Minority Oversampling 
(SMOTE), which adds to the minority class.

In some cases, after generating data and balancing the 
dataset, there are too many features compared to the number 
of samples, which  can cause the problem of overfitting. This 

leaves a classification algorithm that will have a high train-
ing accuracy but, when tested on real-world data, performs 
poorly. To fix this problem, we performed feature extraction 
to map multiple features into a smaller number of features to 
have a smaller but more meaningful feature space.

We applied Support Vector Machine (SVM) and Kernel 
Fisher Discriminant Analysis (KFDA) techniques and other 
standard techniques on the expanded dataset to examine the 
separability of experts from novices. In addition, we devel-
oped an optimization method that provides further flexibil-
ity in the performance differentiation of the subjects at the 
task level. The model is aimed to seek an optimal solution 
by either maximizing or minimizing the objective by given 
parameter constraints for the task performance distribution. 
In this work, we present and compare the results of machine 
learning techniques and our non-linear optimization model. 
The workflow/overview of our study can be seen in Fig. 1.

Literature review

In the literature review, we will define multiple methods 
of synthetic data generation, classification, dimensionality 
reduction, and optimization. Synthetic data generation is 
used in many studies to balance an imbalanced data set. 
In a study by Mohammad et al. [9], SMOTE was used 
to improve the classification of an imbalanced diabetes 
dataset. The diabetes dataset used, ZADA, contains around 
909 patient records. This imbalanced two-class dataset 
consists of seven independent variables with a class label 
classifying the patient as diabetic or non-diabetic. Moham-
med et al. used six classification algorithms: Naïve Bayes, 
K-nearest neighbor (KNN), decision tree, logistic regres-
sion, Support Vector Machines, and artificial neural net-
works. The SVM scored the highest accuracy with 0.87 out 
of all these methods. After using SMOTE, the accuracy 
of the KNN algorithm improved from 0.82 to 0.91, with a 
1.00 imbalance correction. Although this paper achieved 
significantly higher accuracy using SMOTE and some 
other preprocessing, one possible improvement on this 
paper would be to use feature reduction using a technique 
like PCA. In a work by Xu et al. [10], decision trees were 
used as their classification algorithm. They used a clus-
ter-based oversampling algorithm (KNSMOTE), which 
combined SMOTE and K-means clustering to maintain a 

Fig. 1   The workflow of our study
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proper sample class. Using eight UCI datasets, this KNS-
MOTE algorithm performed 0.99 and 0.99 on sensitivity 
and specificity metrics using the random forest algorithm.

Roopa et al. [11] presented a feature extraction method 
for extracting valuable features for tuberculosis analysis. 
Although tuberculosis can be diagnosed through chest 
x-ray images, many features prohibit the possibility of a 
computer diagnosing this disease. They used both PCA 
and KPCA to perform feature extraction on the x-ray 
images, allowing a computer to classify the images as 
being affected or normal. Roopa et al., concluded that in a 
linear regression model for the classification, PCA resulted 
in 0.96 while KPCA resulted in 0.62 accuracy. The result 
of KPCA being 0.62 is an unacceptable result. Wu et al. 
[12] classified gait patterns using KPCA feature extraction 
and SVM. They used KPCA to extract human movement 
information from an OPTOTRAK 3020 motion analysis 
system of 24 young and 24 elderly participants. When 
combining KPCA with the SVM, their model could clas-
sify young or old patients' gait patterns with 0.91 accuracy. 
Although this study achieved a decent accuracy (0.91), it 
could be improved by gathering a larger dataset.

In a paper by Neffati et al. [13], brain MR image data 
classification is performed using SVMs and KPCA. The 
first step in their process was to use KPCA for feature 
extraction. The data initially had 1024 dimensions and 
were reduced by KPCA to 16 principal components. The 
next step they performed was to use K-Fold cross-valida-
tion to avoid overfitting. Once completed, they trained the 
SVM classifier and then tested it using new brain MRIs, 
outputting a prediction. Using an SVM-KPCA classifier 
with an RBF kernel resulted in 1.00 accuracy for three 
different brain MR image databases. With the lack of 
dimensionality reduction in other results, such as only 
reducing to 70 features instead of 16, the accuracy was 
0.97, 0.97, and 0.96 for the three databases. In a study 
on small organic molecules, an SVM correctly classified 
approximately 0.90 of the data with a Matthews correla-
tion coefficient of 0.78 [14].

In a study by Liu et al. [15], KFDA and KPCA were used 
for facial recognition. With ten features, KPCA accurately 
classified 0.76, and with 60 features, the accuracy was 0.83. 
In a paper by Azar et al. [16], lymph disease was diagnosed 
using a random forest classifier and PCA for feature reduc-
tion. They selected 15 attributes for PCA and used the aver-
age of tenfold cross-validation. The accuracy of the random 
forest, when used in unison with PCA, was 0.83. In a study 
by Masetic and Subasi [17], heart failure was diagnosed 
based on automatic electrocardiogram (ECG) results. They 
used five different classifiers or comparisons, including deci-
sion tree, KNN, SVM, and random forest. Their best result 
was from the random forest classifier, which resulted in 1.00 
accuracy in identifying and classifying ECG signals.

A study by Jadhav and Channe [18] compared KNN, 
Naïve Bayes, and decision tree classifiers to classify three 
different datasets (weather nominal, Segment challenge, and 
supermarket). The accuracy for the weather nominal data-
set was 1.00, 0.92, and 1.00, respectively. For the second 
dataset, the results were 1.0, 0.816, and 0.99, respectively. 
The final dataset's accuracies were 0.89, 0.63, and 0.63. 
Although KNN had the best accuracies overall, decision 
tree was the second best.

In a study by Lavanya and Rani [19], three breast cancer 
datasets were classified using a decision tree classifier, clas-
sification, and regression trees (CART) using tenfold cross-
validation. Their CART classifier classified the three data-
sets with 0.69, 0.94, and 0.92 accuracy. In [20], the authors 
classified X-ray images of good and defective pecans. They 
used 100 images of good and 100 images of defective pecans 
and compared AdaBoost and SVM classifiers. The AdaBoost 
classifier resulted in 0.92, while the SVM classified at 0.90 
accuracy. In a paper by Hu et al. [21], they used UAV images 
to identify diseased Pinus trees. They compared DCGAN, 
the deep learning method, and the AdaBoost classifier. They 
combined multiple methods and used precision as the pri-
mary indicator. AdaBoost had a precision of 0.48, combined 
with AlexNet resulted in 0.58, and combined with VGG 
resulted in 0.69.

In a study by Hossain et al. [22], plant leaf disease detec-
tion was performed using a KNN classifier. The classifier 
was tasked with classifying between six different diseases. 
The classifier in this study resulted in a 0.96 accuracy when 
classifying these six diseases. In a paper by Moldagulova 
[23], KNN was used to classify textual documents. When 
classifying, they used different numbers of neighbors. 1, 5, 
25, 50, 51, 75, and 300 neighbors to compare the results. 
With one neighbor, the accuracy was 1.00, with five neigh-
bors, the accuracy was 0.97, with 25 neighbors, the accuracy 
was 0.94, and for 300 neighbors, the accuracy was 0.48. 
Their results showed that as the neighbors increased, the 
accuracy became worse.

With constraint optimization, the problem arises where 
not all the functions or constraints are linear. To solve these 
problems, we use non-linear constraint optimization (NCO). 
NCOs can have unbounded variables, upper bounds, and 
range constraints [24]. In a paper written by Schouwenaars 
et al. [25], MILP is used for vehicle path planning. This 
paper uses LP, mixed integer, and linear constraints in tan-
dem to find optimal solutions for a vehicle's path and colli-
sion avoidance. This research's two main decision variables 
were time and fuel, with constraints to avoid collision with 
other vehicles and obstacles. Since this study is for collision 
avoidance, the techniques do not apply to our study. Schou-
wenaars et al. used CPLEX optimization software in unison 
with AMPL/Matlab interface in this paper. This paper used 
MILP to create a novel approach to multiple-vehicle path 
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planning with collision avoidance. A detailed method of 
constraint distance optimization is outlined in a study on 
finding the optimum blend of fractal methods for automatic 
malignancy determination in dermoscopy images [25]. They 
used four different mixed integer programming classification 
models: maximizing the distance between groups, minimiz-
ing the total distance within groups, maximizing the total 
distance between groups, and minimizing the maximum 
within the group.

Methods

The Indiana University Human Research Protection Program 
has determined the project does not require an IRB review 
due to the project not involving human subjects.

Data collection

We used seven recorded complete ESG procedural videos 
performed on porcine models as part of our HTA-based 
development of the initial metrics for the ESG procedure [3]. 
These seven video recordings each included three camera 
angles: the endoscope view, the GoPro view, and an external 
camera view. These procedures were performed by a total 
of four experts and three novices. Two experts performed 
the four expert procedures, and three different novices per-
formed all three novice procedures (one each). Using the 
recordings, we scored each performance using our metrics 
[3]. Our metrics consist of 7 tasks and 45 sub-tasks with a 
Likert scale type of grade, with some consisting of an inter-
mediate score. The metrics are inverted; therefore, when the 
task is completed properly, the endoscopist will be given a 
zero, and when the task is performed incorrectly, they will 
be given a five. Following the performance evaluation, we 
performed the statistical analysis and determined the task 
time and performance relation as previously reported [3].

Synthetic data generation

The machine learning algorithm’s accuracy is proportional 
to the size of the data. As the number of procedures recorded 
for the initial study was limited, we needed to expand the 
dataset. Intuitively, we could record more surgical perfor-
mances and evaluate them. Unfortunately, this was not a 
feasible option due to COVID-19, where access to the lab 
setting was very limited. We, therefore, used an accurate 
synthetic data creation method to expand the current data. 
To avoid creating an imbalanced dataset, we utilized over-
sampling to create our synthetic data. The purpose of over-
sampling in data analysis is to compensate for imbalanced 
datasets and functions by taking the minority class of the 

dataset and creating synthetic data, enlarging the minority 
class to balance the dataset [26].

There are a few main types of oversampling techniques, 
including random oversampling, SMOTE, and data augmen-
tation. Random oversampling takes random samples from 
the minority class and copies them until the dataset is bal-
anced. This was not a viable option since we desired more 
complex synthetic data. Other forms of data augmentation 
are mainly used in image data, where the image is cropped 
or rotated and added to the data set [27]. Since we are not 
using image data, we ended up utilizing SMOTE. SMOTE 
works by taking a sample from the minority class and con-
sidering its K-nearest neighbors, taking the vector between 
the K-neighbor and the selected data point, then parameter-
izing the value with a random number between 0 and 1 [28]. 
This allowed us to create a balanced dataset with ten values 
in each class.

Data preprocessing and feature reduction

The main steps in preprocessing were scaling the data, 
reducing the feature dimensionality, tuning the parameters, 
and performing K-Fold classification. The standard scaler 
standardizes the features by subtracting the mean and scaling 
to unit variance. The formula for calculating the standard-
ized score is as follows:

where s is the standard deviation of the training samples, u 
is the mean of the training samples, and x is a value, or ele-
ment, of our sample.

Principal component analysis (PCA) [29, 30] was used 
for the next step in preprocessing the data. PCA was used 
to reduce the features from three to two dimensions. The 
three features (suturing, total grade, and time completion) 
are linearly combined and projected onto the PC1-PC2 two-
dimensional space. In this lower dimensional representation, 
the first two principal components already explain 0.98 of 
the variance in our data. Since every single classifier went 
through the same process of PCA feature reduction, all of 
them used the same linear combinations of the old features. 
Below is the PCA biplot shown in Fig. 2.

The next step in preprocessing the data was to tune the 
parameters using a K-fold cross-validation framework. 
For each classifier, the distribution of the parameters was 
defined. For SVM, the kernel parameter and the penalty 
parameter were taken in as parameters. The decision tree's 
max depth, min samples leaf, and criterion were taken in. 
For AdaBoost, the n estimators, learning rate, and algorithm 
were taken in as parameters. For the random forest n esti-
mator, max depth and criterion were taken in. For KNN n 
neighbors, weights, leaf size, and algorithm were taken in as 

z =
x − u

s
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parameters. For KFDA, n components, the kernel parameter, 
and regularization parameter ɛ = 1e-08 were taken in. All 
the classifiers used a randomized search to search for the 
best possible combination of parameters. Each classifier ran 
six cross-fold validation since the number of splits cannot 
exceed the number of members in the least populated class 
(six).

Classification methods

Since our goal is to create a proper threshold to classify 
between expert and novice, we used our new preprocessed 
data to train six classifiers. The six classifiers were SVM, 
KNN, AdaBoost, KFDA, random forest, and decision trees. 
SVMs work by using a soft margin classifier which allows 
for soft misclassification (outliers), creating a better long-
term classification accuracy [31]. KNN works by finding 
the number k of the nearest “neighboring” points based 
on a specified number of neighbors to look for. Based on 
those nearest neighbors, it will calculate its similarity to the 
already classified points and decide [32]. AdaBoost is an 
ensemble boosting classifier that combines multiple classi-
fiers to increase accuracy and sets weights of those classi-
fiers that focus on unusual observations [33]. KFDA works 
by maximizing the between-class scatter and minimizing 
the within-class scatter. KFDA improves upon Fischer dis-
criminant analysis (FDA) by enabling non-linear subspaces 
using the kernel trick. Decision trees predict a target value 
by learning decision rules inferred from the data features. 
Random forest classifier is an ensemble classifier that builds 
multiple decision trees on different samples and takes the 
majority vote. Since we used PCA to reduce our data from 
three dimensions (total score, suture score, total duration) 
to two dimensions, we now had linearly separable data to 
classify. We used PCA for all six classifiers and recorded 
the results for all of them.

Non‑linear constraint optimization

Our objective in the optimization model has a several fold 
outcome; first, we desire to separate the distance between 
two groups, expert and novice. Second, properly identify/
weigh each task in the procedure. As the preliminary step, 
we calculated the distance between these two groups after 
clustering them as expert and novice. Once we have the 
distance between the two groups, we optimize the task 
scores that add to the total score. This leads the distance 
between the clusters to “maximize,” creating a more sig-
nificant distinction between an expert and a novice. This 
objective is achieved through non-linear constraint opti-
mization, which finds the optimal solution to our objective 
function [24].

Weighting each task

To find the weight of each task, an optimization array was 
made with all 45 sub-tasks and then ran through the objec-
tive function defined in Table 1. The objective function 
returns the array of sub-tasks based on a guess input. In 
our case, the guess input(x) is the average of all the scores 
per task, called the optimization array (optArray). We set a 
constraint with 197 as the maximum score since that was 
our original worst score and − 197 as the best possible score. 
The solver then used this maximum score and the guess 
input to calculate the new scores for each sub-task. Based 
on this process, the weights of each sub-task were found and 
recorded in the results section.

Separating distance between groups

We provide custom constraints using a distribution function 
for a task. We customize the performance score distribution 
at the fine granularity at the task level. Therefore, we use 
beta distribution to parametrize our solution. Although beta 
distribution is a probability distribution, we used it as our 
optimized weight. Hence, the model we created uses Beta 
Distribution as a weighting technique to separate the two 
clusters effectively. With our objective function of maximiz-
ing the distance between the expert cluster (EC) and novice 
cluster (NC), we created a list of constraints that will guide 
the optimization model to an acceptable maximization of 
the scoring metrics. Beta distribution is typically used as 

Fig. 2   PCA bivariate plot of first two principal components

Table 1   Objective function of the optimization model

Optimization model

Objective function = Max ∶ |optArray(x)|
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a probability distribution, but we will use this value as a 
weight in our model. Our maximization model is shown in 
Table 2.

The original distance is calculated by taking the best 
novice score (BNS) and subtracting it from the worst expert 
score (WES). Our maximization model uses the same tech-
nique but divides a specific weight, created through beta 
distribution unique to each cluster, into the respective scores. 
The model then iterates through the possible weights to 
maximize the distance between the two groups until land-
ing upon the optimal solution.

Table 2 also shows the beta distribution functions. The 
first equation shows the task average ( uT ) where T stands 
for the task itself and i stands for the index of the task list. 
The second equation shows the normalized task average ( Tx) 
where k stands for the index of the task list. The third equa-
tion is the weight of each task based on the beta distribution 
( Tw) . Equations four and five are used to calculate the alpha 
( �T ) and beta ( �T ) values for the task, where � is the mean 
and �2 is the variance. Equation six is the beta function itself 
( BT (�T , �T )) , where Γ(y) is the gamma function.

We created constraints for this objective function 
to limit the maximum distance appropriately, as seen 
in Table 2. We define the weighted distance in the first 
constraint as between 0 and 197. We chose the value 197 
because our original maximum score was 197. In the 
second constraint, we define a constraint for the novice 
weight (NCWeight), with a lower bound of the negative 
standard deviation of the NC total grade (− StdNC), and 
an upper bound of the standard deviation of the NC total 
grade (StdNC). For the third constraint, we define a similar 

constraint as the second one but for the expert weight 
(ECWeight) with a lower bound of the negative stand-
ard deviation of the EC total grade(-StdEC) and an upper 
bound that is the standard deviation of the EC total grade 
(StdEC). The model can maximize the distance between 
EC and NC with these constraints, effectively separating 
the two clusters.

Results

SMOTE results

After applying SMOTE as explained in Section “Synthetic 
data generation,” our dataset has been expanded to consist 
of twenty values with ten in each class, expert and nov-
ice. After expansion, we conduct a simple SVM for future 
use of classification in our ESG evaluation platform. The 
comparison of the original and expanded dataset can be 
seen in Fig. 3 for the suturing task score, time completion 
score, and total score. The original expert class had worse 
grades (higher grades) than the expert class's grades (lower 
grades) in the expanded dataset. As for the novice class, 
the original class was affected by a small number of outli-
ers. In contrast, the expanded novice class was skewed 
with a more homogenous distribution of the performance 
scores, reflecting a better representation of novice scores. 
These data indicate that SMOTE created greater separation 
between the two classes allowing for better classification 
accuracy by the SVM.

Table 2   Optimization model

Optimization model

Objective function = Max ∶
|||

BNC

NCWeight
−

WEC

ECWeight

|||
Functions/Equations

1. uT =

∑I

i=1
Ti

I

2. Tx =
uT∑n

k=1
Tk

3. Tw =
T�−1
x (1−Tx)

�−1

B(�,�)

4. 
�T =

(
1−�T

�2
T

−
1

�T

)
�2
T

5. 
�T = �T

(
1

�t

− 1
)

6. 
BT

(
�T , �T

)
=

Γ(�T)Γ(�T)
Γ(�T+�T)

Constraints

1. 

(
NC

NCWeight

)
−

(
EC

ECWeight

)
, lb = 0, ub = 197

2. -StdNC < NCWeight < StdNC
3.  -StdEC < ECWeight < StdEC
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Classifiers/PCA results

When running PCA, our feature space went from three to 
two features creating a linearly separable dataset. Since PCA 
takes the original variable space (suturing, time completion, 
and total grade) and maps it into a new feature space, the 
three original features get mapped into two newly created 
orthogonal features built as linear combinations of the three 
original features.

After running our dataset through SMOTE and PCA, 
we ended up with our dataset of twenty-six samples with 
two features, i.e., the first two principal components. We 
then split the data into a training and a testing dataset. Our 
training data were 19 samples (ten experts, nine novices), 
while our testing data were seven samples (three experts, 
four novices). The metrics used for the results of the classi-
fiers implemented in this study were the confusion matrix, 
accuracy, precision, recall, and Fl score [34]. Accuracy, pre-
cision, recall, and F1 score for each classifier can be seen in 
Table 3. The confusion matrix comparison of each classifier 
used can be seen in Fig. 4.

When tuning the parameters of the SVM classifier, the 
best parameters were RBF kernel, gamma of 1e-05, and 
a C of 1000. Figure 4a shows the confusion matrix for 
the SVM’s training data, where 1.00 of the experts were 

classified correctly, and 0.89 of the novices were classi-
fied correctly, leaving only 0.11 of the novices who were 
falsely classified as experts. The precision for each training 
and testing for the SVM was 0.95 and 1.00, respectively, 
while recall for the training and testing was 0.94 and 1.00, 
and F1 score for the training and testing was 0.95 and 1.00.

For the AdaBoost classifier, the best parameters in the 
fivefold validation were 400 estimators, the learning rate 
set to 0.001, and the algorithm as SAMME.R. For the 
KNN classifier, the best parameters in the fivefold vali-
dation were 11 neighbors, uniform weights, leaf size of 
thirty, and the ball tree algorithm. Figure 4b and c depicts 
the training data confusion matrix for the AdaBoost and 
KNN classifiers. AdaBoost and KNN correctly calculated 
1.00 of the true negative and 1.00 of the true positive. 
Thus, leaving the false negative at zero and the false true at 
zero. For both the AdaBoost and the KNN classifiers, the 
precision for each class, expert and novice, was 1.00 and 
1.00, respectively. The F1 scores for the experts and nov-
ices were 1.00 and 1.00 for the AdaBoost and the KNN.

For the KFDA classifier, the best parameters in the five-
fold validation were a linear kernel two component and a 
robustness offset of 1e-08. KFDA calculated 1.00 of the 
novices correctly and 1.00 of the experts correctly, while 
misclassifying none. This can be seen in Fig. 4d. The pre-
cision for training and testing for the KFDA classifier was 

Fig. 3   Comparison of suturing, time completion, and total score for 
original and expanded datasets

Table 3   Comparison of 
classifier methods using 
accuracy, precision, recall, and 
F1 score

Method Accuracy Precision Recall F1 Score

Training Testing Training Testing Training Testing Training Testing

SVM 0.94 1.00 0.95 1.00 0.94 1.00 0.95 1.00
AdaBoost 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
KNN 1.00 0.85 1.00 0.83 1.00 0.90 1.00 0.84
KFDA 1.00 0.85 1.00 0.83 1.00 0.90 1.00 0.84
Random forest 1.00 0.85 1.00 0.92 1.00 0.75 1.00 0.79
Decision tree 1.00 0.71 1.00 0.71 1.00 0.71 1.00 0.71

Fig. 4   Confusion matrix comparison of each classifier
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1.00 and 0.83, respectively. The F1 scores for the training 
and testing were 1.00 and 0.84.

While for the parameters of the random forest classifier, 
the best parameters in the fivefold validation were 300 esti-
mators, no max depth, and an entropy criterion. As seen 
in Fig. 4e, random forest correctly calculated 1.00 of the 
novices and 1.00 of the experts correctly. The precision for 
training and testing for the random forest classifier were 1.00 
and 0.92, respectively. The F1 scores for the training and 
testing were 1.00 and 0.79.

Finally, for tuning the parameters of the decision tree 
classifier, the best parameters in the fivefold validation were 
a max depth of three, a minimum sample leaf of five, and a 
Gini criterion. Above in Fig. 4f is the training data confusion 
matrix for the decision tree classifier. Decision tree correctly 
calculated 1.00 of the novices and 1.00 of the experts. The 
precision for training and testing for the decision tree clas-
sifier were 1.00 and 0.71, respectively. The F1 scores for the 
training and testing were 1.00 and 0.71.

Figures 5, 6, 7, 8, 9, 10 display training and testing graphs 
for each classifier. In these figures, experts are represented as 
blue squares, and novices are represented as orange triangles 
for the training case. Figure 5a shows the SVM classified the 

training data with 0.94 accuracy. Figure 5b shows the SVM 
classified the testing data with 1.00 accuracy with the seven 
data samples.

AdaBoost's training data classification results in a 
decision plot where nine expert surgeons were all classi-
fied accurately, and five out of six novices were classified 
accurately. When training the AdaBoost classifier with the 
tuned parameters, the training accuracy was 1.00, as seen in 
Fig. 6a. Given seven data samples, AdaBoost classified the 
testing data at 1.00, as seen in Fig. 6b.

For KNN, training data were classified with 1.00 accu-
racy (Fig. 7a). In contrast, for the testing data, KNN clas-
sified the testing data at 0.85 accuracy, where seven data 
samples were given (Fig. 7b).

Figures 8a and b show that linear kernel in KFDA clas-
sified the training data with 1.00 accuracy and testing data 
with 0.85 accuracy, respectively. Random forest classified 
the training data with 1.00 (Fig. 9a) accuracy and testing 
data at 0.85 (Fig. 9b).

Finally, Fig. 10a shows the decision tree graph display-
ing the classification separating the two groups, novice, 
and expert, for the training case. Decision tree classified 
the training data with 1.00 accuracy. Figure 10b shows the 

Fig. 5   Support vector classification a training and b testing graph

Fig. 6   AdaBoost classification a training and b testing graph
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decision tree graph displaying the classification of both 
groups for the testing data. Decision tree classified the test-
ing data at 0.71 accuracy, where seven data samples were 
given.

Non‑linear constraint optimization results

Based on the optimization model, we determined that the 
suturing bite is the most critical task, given a maximum 

score of 8.353. The second most important component was 
time completion, with a maximum score of 8.203. All the 
other maximum scores are shown in Table 4.

Before performing NCO on our data, our original dis-
tance between the BNS and the WES was only 2.0. After 
completing NCO on our data with the given constraints as 
explained in Section ‘Non–Linear Constraint Optimization,” 
our optimized weights were − 0.9661 (Novice Weight) and 
1.1353 (Expert Weight), giving us a new optimized distance 

Fig. 7   K-Nearest neighbors classification a training and b testing graph

Fig. 8   KFDA (linear Kernel) classification a training and b testing graph

Fig. 9   Random forest classification a training and b testing graph
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of 55.7162 between the two clusters. This is a distance of 
53.7162, which is ≈27.8 times larger than our pre-optimi-
zation results. With this more significant distance, we now 
have two clusters further away, leaving less room for error 
in classification for future procedure grading.

Conclusion

With a long-term goal of creating a well-performing sim-
ulation-based trainer for the ESG procedure, we presented 
a method for the simulator to classify between expert and 

novice and separate the distance between the two groups. 
After creating synthetic data using SMOTE and balancing 
our dataset, we reduced the dimensionality of our features 
using PCA. We classified experts and novices by compar-
ing six different algorithms SVMs, KNN, AdaBoost, KFDA, 
decision tree, and random forest. The most accurate training 
result was 1.00 accuracy from AdaBoost, KNN, random for-
est, and decision tree, while the most accurate testing result 
was 1.00 accuracy from SVM and AdaBoost.

Afterward, using a non-linear constraint optimization, we 
created weights for the tasks in our grading metrics which 
we will use in our ESG simulator. We found that the most 

Fig. 10   Decision tree classification a training and b testing graph

Table 4   Optimized sub-task 
scores

Sub-task optimized scores

Insertion of Over tube: 4.05 Suture posterior wall: 4.05
Insert into Posterior Pharynx: 4.05 Suture direction: 4.05
Advance into Esophagus: 4.05 Suture bite: 8.35
Diagnostic evaluation of esophagus: 4.05 Number bites per running suture: 4.05
Advance into stomach: 4.05 U-shaped pattern: 4.05
Advance into duodenum: 4.05 Tighten sutures: 4.05
Diagnostic of duodenum: 4.05 Suture line: 6.85
Diagnostic of stomach: 4.05 End suture: 4.60
Advance argon plasma: 4.05 Evaluate sleeves need for reinforcement sutures: 6.20
Mark anterior wall: 4.05 Deploy reinforcement sutures: 4.05
Mark posterior wall: 4.05 Suture set: 4.70
Mark greater curvature: 4.05 Removal double channel gastroscope: 4.05
Mount overstitch: 4.05 Severe bleeding: 4.05
Insert into pharynx: 4.05 Bent tag: 4.05
Insert into esophagus: 4.05 Load tissue helix command: 4.05
Insert into stomach: 4.05 Extend tissue helix command: 4.05
Start of suture: 4.05 Rotate blue cross counterclockwise command: 4.05
Grasp tissue anterior wall: 4.05 Retract helix command: 4.05
Suture anterior wall: 4.05 Remove helix command: 4.05
Grasp tissue greater curvature: 4.05 Load cinch command: 4.05
Suture greater curvature: 4.05 Deploy cinch Command: 4.05
Grasp tissue posterior wall: 4.05 Time completion: 8.20
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important component to differentiating expert from novice 
was the suture bite, and the next most important was time to 
completion. We were able to create a distinction between the 
expert and the novice group by 51.72. Although, in future of 
the ESG simulator, there will be more data available, and the 
classifiers may not generalize at 1.00 accuracy, this model 
can still be retrained with new data, and the same techniques 
can be used to create a reliable classification tool for the 
trainer. In future work, we plan to record more ESG proce-
dures to get a better dataset and rerun this process with the 
newly created dataset for validation and comparison pur-
poses. This will improve our model with a more accurate 
synthetic dataset and reflect the actual procedural scores. In 
addition, we will employ other data generation techniques, 
such as GANs, to create synthetic data, then classify them 
with the same classifiers used in this study to compare with 
optimization to validate the authenticity of our workflow.
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